Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Analysis 2 mit Übungen - Detailansicht

Grunddaten
Veranstaltungsart Vorlesung/Übung Langtext
Veranstaltungsnummer 1396 Kurztext
Semester WiSe 2024/25 SWS 4
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus Jedes Semester Studienjahr
Hyperlink https://elearning.hs-weingarten.de/course/view.php?id=1465
Sprache Englisch
Belegungsfrist Hauptbelegungszeitraum    23.09.2024 - 18.10.2024    aktuell
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Status Lernziele fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export für Outlook
Fr. 14:15 bis 15:45 Einzel am 15.11.2024 Gebäude V/Laz1 - V 008        
Einzeltermine anzeigen
iCalendar Export für Outlook
Mo. 09:45 bis 11:15 woch Gebäude H - H 004        
Einzeltermine anzeigen
iCalendar Export für Outlook
Fr. 14:15 bis 15:45 woch Gebäude H - H 004       15.11.2024: Die Veranstaltung findet in V008 statt.
Gruppe [unbenannt]:
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Fechter, Frank, Professor, Dr.-Ing. verantwortlich
Laut SPO für
Abschluss Studiengang Semester Kategorie ECTS
Bachelor Studienrichtung MB-IPE(RdW) 2 - 2 Pflichtfach 5
Bachelor Studienrichtung MB-IPE(M) 2 - 2 Pflichtfach 5
Bachelor Elektromobilität und regenerative Energien 2 - 2 Pflichtfach 5
Bachelor Elektrotechnik und Informationstechnik 2 - 2 Pflichtfach 5
Prüfungen / Module
Prüfungsnummer Prüfungsversion Modul
3608 10 Analysis 2
2411 11 Analysis 2 with exercises
2209 10 Analysis 2 mit Übungen
Zuordnung zu Einrichtungen
Bachelorstudiengang Elektrotechnik und Informationstechnik
Bachelorstudiengang Elektromobilität und Regenerative Energien
Inhalt
Kurzkommentar

Die erste Vorlesung findet am Montag, den 7.10.2024 in Raum H004 um 9:45 statt.

 

Inhalt

 

Inhalt:

1. Reelle Funktionen von mehreren Veränderlichen

1.1 Grundbegriffe

1.2 Differentialrechnung im ℝn

1.3 Integralrechnung mehrerer Veränderlicher

2. Vektoranalysis

2.1 Kurven im Raum

2.2 Flächen im Raum

2.3 Linienintegrale

2.4 Potentialfunktionen und Gradientenfelder

2.5 Oberflächenintegrale

2.6 Divergenz und Rotation eines Vektorfeldes

2.7 Sätze von Gauß und Stokes

3. Differentialgleichungen

3.1 Einführung

3.2 Gewöhnliche Differentialgleichungen 1. Ordnung

3.3 Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten

3.4 Systeme von Differentialgleichungen

3.5 Numerische Integration von Differentialgleichungen

Literatur

Papula L.: Mathematik für Ingenieure und Naturwissenschaftler Band 2. Springer Vieweg Verlag, 2015.

Papula L.: Mathematik für Ingenieure und Naturwissenschaftler Band 3. Springer Vieweg Verlag, 2018.

Brauch, W.; Dreyer, H.-J.; Haacke, W.: Mathematik für Ingenieure. Vieweg + Teubner Verlag, 2006.

Burg, K.; Haf, H.; Wille, F.: Höhere Mathematik für Ingenieure. Band 1 Analysis. Springer Vieweg Verlag, 2017.

Stroud, K. A.; Booth, D. J.: Engineering mathematics. Bloomsbury Academic, 2020.

Jeffrey, A.: Mathematics for engineers and scientists. Taylor & Francis Inc, 2004.

Croft, A.; Davison, R.; Hargreaves M.: Engineering mathematics: a foundation for electronic, electrical, communications, and systems engineers. Pearson Education Limited, 2017.

Weitere Übungen finden Sie in:

Wenzel, H.; Heinrich, G.: Übungsaufgaben zur Analysis. Vieweg Teubner Sandten, 2005.

Papula L.: Mathematik für Ingenieure und Naturwissenschaftler Klausur- und Übungsaufgaben. Springer Vieweg Verlag, 2011.

Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler. Anwendungsbeispiele. Springer Vieweg Verlag, 2012.

 

Als Nachschlagwerk zu empfehlen:

Springer-Taschenbuch der Mathematik: Begründet von I.N. Bronstein und K.A. Semendjaew. Weitergeführt von G. Grosche, V. Ziegler und D. Ziegler Herausgegeben von E. Zeidler Springer Vieweg, 2012.

Papula, L.: Mathematische Formelsammlung: Für Ingenieure und Naturwissenschaftler. Springer Vieweg Verlag. 2017

Lernziele

Lernziele:

Der Studierende kann ausgewählte mathematischen Problemstellungen aus dem Bereich der Analysis mehrerer Veränderlicher und der gewöhnlichen Differentialgleichungen selbständig lösen. Außerdem kann er die Methoden auf einfache Problemstellungen aus der Physik und der Elektrotechnik anwenden.

Voraussetzungen

Mathematik 1 und 2 (Analysis 1, Lineare Algebra)

Leistungsnachweis

Benotete Prüfungsleistung: Klausur, 90 Minuten mit Hilfsmitteln (Außer Geräten mit Netzwerkschnittstelle).


Strukturbaum
Die Veranstaltung wurde 3 mal im Vorlesungsverzeichnis WiSe 2024/25 gefunden:
Grundstudium  - - - 1