Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Lineare Algebra - Detailansicht

  • Funktionen:
  • Zur Zeit kein Belegungszeitraum aktiv.
Grunddaten
Veranstaltungsart Vorlesung Langtext
Veranstaltungsnummer 1407 Kurztext
Semester WiSe 2022/23 SWS 4
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Rhythmus Jedes Semester Studienjahr
Hyperlink  
Sprache Deutsch
Belegungsfristen Belegungszeitraum MD    01.09.2022 - 31.10.2022   
Hauptbelegungszeitraum    19.09.2022 - 14.10.2022   
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Status Lernziele fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 08:00 bis 09:30 woch von 11.10.2022  Gebäude T - T 117 Schneider     20.12.2022: Die Veranstaltung findet in M106 statt!
Einzeltermine anzeigen
iCalendar Export für Outlook
Do. 08:00 bis 09:30 woch von 13.10.2022  Gebäude M/Laz5 - M 106 Schneider      
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 08:00 bis 09:30 14tägl von 18.10.2022  Gebäude M/Laz5 - M 105 Perk      
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 09:45 bis 11:15 14tägl von 18.10.2022  Gebäude V/Laz1 - V 106 Perk      
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 15:45 bis 17:15 14tägl von 19.10.2022  Gebäude M/Laz5 - M 107       02.11.2022: Ersatztermin 09.11.2022
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 15:45 bis 17:15 14tägl von 19.10.2022  Gebäude B - B 016       02.11.2022: Ersatztermin 09.11.2022
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 17:30 bis 19:15 14tägl von 19.10.2022  Gebäude C - C020       02.11.2022: Ersatztermin 09.11.2022
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 17:30 bis 19:15 14tägl von 19.10.2022  Gebäude C - C017       02.11.2022: Ersatztermin 09.11.2022
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 08:00 bis 09:30 Einzel am 08.11.2022 Gebäude M/Laz5 - M 105 Perk      
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 09:45 bis 11:15 Einzel am 08.11.2022 Gebäude M/Laz5 - M 105 Perk      
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 15:45 bis 17:15 Einzel am 09.11.2022 Gebäude M/Laz5 - M 105        
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 15:45 bis 17:15 Einzel am 09.11.2022 Gebäude M/Laz5 - M 107        
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 17:30 bis 19:15 Einzel am 09.11.2022 Gebäude C - C017        
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 17:30 bis 19:15 Einzel am 09.11.2022 Gebäude C - C020        
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 17:30 bis 19:15 Einzel am 16.11.2022 Gebäude B - B 016        
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 08:00 bis 09:30 Einzel am 20.12.2022 Gebäude M/Laz5 - M 106        
Gruppe [unbenannt]:
Zur Zeit kein Belegungszeitraum aktiv.
 


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Schneider, Markus, Professor verantwortlich
Perk, Norbert , Dipl.Ing.(TH) begleitend
Laut SPO für
Abschluss Studiengang Semester Kategorie ECTS
Bachelor Mediendesign 1 - 1 Pflichtfach 5
Bachelor Angewandte Informatik 1 - 1 Pflichtfach 5
Prüfungen / Module
Prüfungsnummer Prüfungsversion Modul
3604 10 Lineare Algebra
4106 10 Lineare Algebra
4206 11 Lineare Algebra
4306 12 Lineare Algebra
3604 11 Lineare Algebra
19903 11 Mathematik 1/Lineare Alg.
Zuordnung zu Einrichtungen
Bachelorstudiengang Mediendesign
Bachelorstudiengang Angewandte Informatik
Inhalt
Inhalt

E-Learning-Inhalte! Start Do, 18.3.2021, 16 Uhr, BBB-Konferenz
Moodle-Kurs: https://elearning.rwu.de/course/view.php?id=2004

  1. Mathematische Grundlagen
    - Grundbegriffe der Logik: Aussagenlogik,– Prädikatenlogik, Methoden der Beweisführung, Schaltalgebra
    - Grundbegriffe der Mengenlehre: Mengenoperationen , Mengenalgebra, abzählbare und überabzählbare Mengen
    - Relationen
    - Äquivalenzrelationen und Klassen
    - Abbildungen
  2. Lineare Algebra
    - Lineare Gleichungssysteme
    - Gauß-Algorithmus
    -– Determinanten
    - Rechnen mit Matrizen
    - Matrixinversion
  3. Vektoren
    - Definition
    - Rechnen mit Vektoren –
    - Skalarprodukt
    - Vektorprodukt mit Anwendungen: Hesse Normalform, Back Face Culling, Ray Tracing
  4. Vektorräume
    - Definition
    - Lineare Unabhängigkeit
    - Basis, Basistransformation
  5. Lineare Abbildungen
    - Definition
    - Darstellung durch Matrizen
    - inverse Abbildung
    - Komposition von linearen Abbildungen
    - Eigenwerte und Eigenvektoren
  6. Kryptographie: RSA-Verschlüsselung
  7. Komplexe Zahlen
    - Normalform, Exponentialform, Rechenregeln
    - Komplexe Wurzeln,
    - Fundamentalsatz der Algebra
    - Anwendungen
Literatur Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler Band 1 (Kapitel Vektoralgebra) und Band 2 (Kapitel Lineare Algebra) Vieweg + Teubner, Wiesbaden, 2014 bzw. 2015 In der Bibliothek als eBook verfügbar. Teschl, Gerald / Teschl, Susanne: Mathematik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra Springer, Berlin, 2013 In der Bibliothek als eBook verfügbar.
Lernziele In dieser Vorlesung werden die mathematischen Grundlagen aus den Gebieten Mengenlehre, Logik, Vektorrechnung, lineare Algebra, lineare Abbildungen und Computergrafik vermittelt, die für das Verständnis der anderen Studienfächer notwendig sind. Die Teilnehmer können nach dieser Vorlesung einfache Probleme abstrakt modellieren und grundlegende mathematische Lösungsverfahren in den oben genannten Gebieten anwenden. Die unterschiedliche Vorbildung der Studierenden werden ausgeglichen.

Für ausführliche Lernziele siehe Modulhandbuch!
Voraussetzungen Schulmathematik
Leistungsnachweis

lt. gültiger SPO Angewandte Informatik und MD: PF oder K90, lt. Festlegung der Prüfungsleistungen: PF

Die Portfolioprüfung besteht aus einer Klausur, Dauer 90 Minuten, Hilfsmittel: C, D, E, F, G, I, M (Gewicht 75%) und aus Tests zu den Übungen (Gewicht 25%). Die Tests sehen so aus: Zu jeder der Übungen gibt es Hausaufgaben. In den Übungsstunden wird jeweils eine Aufgabe des letzten Aufgabenblatts mit anderen Zahlen oder leicht variiert gestellt. Diese Aufgabe muss bearbeitet und abgegeben werden und wird bewertet. Die fünf besten Tests zählen.


Strukturbaum
Die Veranstaltung wurde 2 mal im Vorlesungsverzeichnis WiSe 2022/23 gefunden:
Grundstudium  - - - 1
Grundstudium  - - - 2