Inhalt
Inhalt |
Mathematische Beschreibung komplexer Theorien der Technischen Mechanik.
Beispiele sind totale und partielle Differentiale, analytische und numerische Verfahren in der Strömungslehre, finite Differenzen, finite Volumen, Spannungs- und Elastizitätstensoren in der Elastizitätstheorie, Räumlicher Spannungszustand, Blechbiegelehre, Anisotropie.
Zusammenhänge in der Physik sollen mit Hilfe der Dimensionsanalyse und Ähnlichkeitstheorie systematisch aufgedeckt werden. Dazu wird ausgehend
von einem einfachen Beispiel die Dimensionsanalyse systematisch entwickelt
und auf komplexe Zusammenhänge angewendet. |
Literatur |
Elastizitätstheorie:
-Gross, Hauger, Wriggers: Technische Mechanik 4: Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden. Springer Vieweg; 2018.
-Läpple: Einführung in die Festigkeitslehre. Springer Vieweg; 2016.
-Rösler, Harders, Bäker: Mechanisches Verhalten der Werkstoffe.
Springer Vieweg; 2016.
Dimensionsanalyse:
-H. Görtler; Dimensionsanalyse; Ingenieurwissenschaftliche Bibliothek; Springer,1975
-J.H. Spurk; Dimensionsanalyse in der Strömungslehre; Springer, 1992
-J. Zierep; Similarity Laws and Modeling; Marcel Dekker, 1971
-J. Zierep; Ähnlichkeitsgesetze und Modellregeln der Strömungslehre;Braun,1991 |
Lernziele |
Die Studierenden vertiefen die Grundlagen der Technischen Physik und der Technischen Mechanik auf hohem wissenschaftlichen Niveau und erweitern sie in ausgewählten Gebieten. Sie sind in der Lage, diese fortgeschrittenen Kenntnisse anzuwenden und auf andere, ihnen bisher nicht bekannte Fragestellungen, wissenschaftlich anzuwenden. |
Voraussetzungen |
Technische Mechanik 1-3, Thermodynamik 1-3, Strömungslehre |
Leistungsnachweis |
Benotete Prüfungsleistung: lehrveranstaltungsübergreifende Modulprüfung: Portfolioprüfung (Details werden in der Veranstaltung und in Moodle bekanntgegeben.) |